Sustainable Systems Research

Mohsen Jafari, Ph.D.
Rutgers University
SyOpt Consulting, Inc.
jafari@rci.rutgers.edu
majafari123@gmail.com

Overall Review

- Center for Advanced Infrastructure and Transportation (CAIT) – annual funding over \$12M
- Our team
 - 9 Ph.D. students
 - 2.5 full time staff (programmers)
 - Contractors
 - Annual funding ~ \$1M
 - Areas of research:
 - Energy systems, building, communities, industrial processes
 - Transportation safety, mobility and energy
 - Funding sources: DOD, DOT, DOE, CEC, FHWA, Siemens, DNV-KEMA, internal

Research Areas

Time Short Term (15min-24h)

Long Term (months, years)

Scale

Individual Building

Load forecasting and Control

- Physics + statistics based energy forecasts
- Real-time MPC control
- Day-ahead planning optimization
- Real-time load tracking control

Demand/Generation management

- Dynamic pricing & coordinated response
- Microgrid control (day ahead and same day)
- Energy Efficiency & MPC
- Storage control

iBEAM

- HVAC system degradation, O&M
- Building value model

cBEAM

Common resources, budget constraints, O&M

Microgrid Planning and investment
Net Zero communities
AFV fueling infrastructure

Building Cluster/ Industrial Complexes/ Communities

Load forecasting and Control

Load forecasting and Control

Objective: Building a prediction model to capture the complex dynamics of the thermal and operational behavior in the building

- Energy-Plus but with minimum number of runs
- Data Driven Models i.e. statistical models/ Neural Network

offline

online

Objective: Developing Building Optimal Control Strategy

- Use real-time sensor data
- Grey-box model (physical/ statistical model)
- MPC to minimize the energy cost while keeping comfort

Objective: Load Planning and Load Tracking

- Use real-time sensor data
- Black-box model (Neural Network)
- Load planning to minimize energy cost
 Load tracking to track the consumption
 commitment made in day-ahead planning

Industrial processes and complexes

Residential/commercial complexes

Physical-Statistical Model

Physical-Statistical Model — Parameter Estimation

effective power rate

$$T_{in}^{t+1}(i) = T_{in}^t(i) + \underbrace{\alpha_i}_{R}^t(i) + \underbrace{\varphi_i}_{V} \big(T_{in}^t(i) - T_{ext}^t(i)\big) + \underbrace{\varepsilon^t}_{\text{parameters}}$$
 Effect of other parameters square Error Technique + random effect

$$Q_i = \sum_{t=1}^{N} \left(T_{in}^{t+1}(i) - \hat{T}_{in}^{t+1}(i) \right)^2$$

$$\frac{\partial Q_i}{\partial \alpha_i} = 0 \qquad \hat{\alpha}_i = \frac{\sum_{i=1}^{N} R^t(i) \cdot \Delta T_i^t \sum_{i=1}^{N} (\Delta \tau_i^t)^2 - \sum_{i=1}^{N} \Delta T_i^t \cdot \Delta \tau_i^t \sum_{i=1}^{N} \Delta T_i^t \cdot R^t(i)}{\sum_{i=1}^{N} R^t(i)^2 \sum_{i=1}^{N} (\tau_i^t)^2 - \sum_{i=1}^{N} (R^t(i) \cdot \Delta \tau_i^t)^2}$$

$$\frac{\partial Q_i}{\partial \varphi_i} = 0 \qquad \hat{\varphi}_i = \frac{\sum_{i=1}^N \Delta T_i^t . \Delta \tau_i^t \sum_{i=1}^N R^t(i)^2 - \sum_{i=1}^N \Delta T_i^t . R^t(i) \sum_{i=1}^N \Delta \tau_i^t . R^t(i)}{\sum_{i=1}^N R^t(i)^2 \sum_{i=1}^N (\tau_i^t)^2 - \sum_{i=1}^N (R^t(i) . \tau_i^t)^2}$$

1) Rogers, A., Maleki, S., Ghosh, S., and Jennings, N. R. Adaptive Home Heating Control Through Gaussian Process Prediction and Mathematical Programming, Agent Technologies for Energy Systems Workshop (ATES) at AAMAS 2011

Energy Forecast Model

How to Estimate Parameters: Cochrane-Orcutt Transformation

Physical-Statistical Model — Energy Forecast Model

Forecast Model Validation

APEP Bldg. UCI 2009 August Data

$$R^{2} = \frac{\hat{\boldsymbol{\beta}}^{T} \mathbf{X}^{T}_{2} (I - H) \mathbf{X}_{2} \hat{\boldsymbol{\beta}}}{\mathbf{y}^{T}_{2} (I - H) \mathbf{y}_{2}}$$

$$R_{adj}^{2} = \frac{\hat{\boldsymbol{\beta}}^{T} \mathbf{X}^{T}_{2} (I - H) \mathbf{X}_{2} \hat{\boldsymbol{\beta}} / k - 1}{\mathbf{y}^{T}_{2} (I - H) \mathbf{y}_{2} / n_{2} - k}$$

$$R^2 = 95.7\%$$

$$R_{adj}^2 = 94.3\%$$

Physical-Statistical Model — Optimization Model

There are two Objective Functions

$$G_{1}(.) \equiv \sum_{k=1}^{N-1} c_{t+k} y_{t+k} \left(R^{t+k+1}, T_{ext}^{t+j} \right) \Delta t + K \cdot \max_{k \in I_{d}} \left\{ y_{t+k} \left(R^{t+k+1}, T_{ext}^{t+j} \right) \Delta t \right\}$$
Usage Cost

Demand Charge Cost

1) Ma, Y.; Kelman, A.; Daly, A.; Borrelli, F.; , "Predictive Control for Energy Efficient Buildings with Thermal Storage: Modeling, Stimulation, and Experiments," Control Systems, IEEE , vol.32, no.1, pp.44-64, Feb. 2012

Physical-Statistical Model — Optimization Model

Constraints

$$\hat{T}_{in}^{t+j}(i) = \hat{T}_{in}^{t+j-1}(i) + \hat{\alpha}_{i}.R^{t+j-1}(i) + \hat{\varphi}_{i}\left(\hat{T}_{in}^{t+j-1}(i) - \hat{T}_{ext}^{t+j-1}(i)\right)$$
Thermal Balance Eq.

$$|T_{min}^{t+j}(i) - |\delta_{t+k}^{l}| \le \hat{T}_{in}^{t+j}(i) \le T_{max}^{t+j}(i) + |\delta_{t+k}^{u}|$$

Thermal Comfort Constraints

$$\delta_{t+k}^{l}, \delta_{t+k}^{u} \ge 0$$

 $i = 1, 2, ..., m \text{ (# zones)}, j = 1, 2, ..., N$

Physical-Statistical Model — Optimization Model

$$G_{1}(.) = \min \sum_{k=1}^{N-1} c_{t+k} y_{t+k} \left(R^{t+k+1}, T_{ext}^{t+j} \right) . \Delta t + K. \max_{k \in -t_{d}} \left\{ y_{t+k} \left(R^{t+k+1}, T_{ext}^{t+j} \right) \Delta t \right\}$$

$$G_{2}(.) = \min p \sum_{k=1}^{N} \left(\left| \delta_{t+k}^{u} \right| + \left| \delta_{t+k}^{l} \right| \right)$$

$$S.t.$$

$$\int_{i=1}^{T_{t+j}(i)} (i) = \hat{T}_{in}^{t+j-1}(i) + \hat{\alpha}_{i} . R^{t+j-1}(i) + \hat{\varphi}_{i} \left(\hat{T}_{in}^{t+j-1}(i) - \hat{T}_{ext}^{t+j-1}(i) \right)$$

$$T_{min}^{t+j}(i) - \left| \delta_{t+k}^{l} \right| \leq \hat{T}_{in}^{t+j}(i) \leq T_{max}^{t+j}(i) + \left| \delta_{t+k}^{u} \right|$$

$$\delta_{t+k}^{l}, \delta_{t+k}^{u} \geq 0$$

$$i = 1, 2, ..., m \ (\# \text{ zones}), j = 1, 2, ..., N$$
Dynamic Programming

Neural Network Model

 Non-linear Autoregressive with External Inputs (NARX) Neural Network fits to EnergyPlus simulation data

```
\begin{split} S_{t+1} &= f_{NN}(S_t, S_{t-1}, S_{t-2}, \dots, S_{t-d_s}, \\ & x_t, x_{t-1}, x_{t-2}, \dots, x_{t-d_x}, \\ & u_t, u_{t-1}, u_{t-2}, \dots, u_{t-d_u}) \end{split}
```

S: system states (power, average room temperature)

x: weather and operation factors

(time, month,

dry bulb temp, dew point temp,

lighting load, plug load, occupancy)

u: control inputs (cooling setpoint, heating setpoint)

Neural Network Model - Model Validation

- Model is trained with data generated from 25 year simulation and randomly generated operations and control inputs (to have enough variations)
- NARX with 11 hidden layer nodes and 1 step delay

 $R^2 = 0.9979$

Prediction error:

Power: ≈10kW

Ave. Zone Temp: ≈1°C

Day-Ahead Planning

Planning problem formulation

Minimize:
$$\sum_{t=1}^{24} F_t$$
 s. t.:
$$F_t = C_t P_t + \alpha U(T_t)$$

$$U(T_t) = (T_t - T_{opt})^2$$
 Deviation from optimal (comfortable) temperature
$$[{P_t \atop T_t}] = NARX_NN(W', O', u')$$

F: overall cost

C: unit price of energy consumption

P: energy consumption

 α : thermal comfort loss coefficient

U: thermal comfort loss

T: room temp

 T_{opt} : optimal indoor air temp

W': weather forecast

O': operations forecast

u': planned control inputs

Neural Network Model — Day-Ahead Planning result

Real-Time Load Tracking

Load Tracking problem formulation

Minimize:
$$\sum_{t=1}^{24} D_t$$
 s. t.:
$$D_t = CFD_t(P_t - P'_t)^2$$

$$\begin{bmatrix} P_t \\ T_t \end{bmatrix} = NARX_NN(W, O, u)$$

D: Contract-for-Difference cost

CFD: Contract-for-Difference rate

P: real energy consumption

P': planned/committed consumption

T: room temp

W: real weather

O: real operations

u: real control inputs

Real-Time Load Control

Research Areas

Time Short Term (15min-24h)

Long Term (months, years)

Scale

Individual Building

Load forecasting and Control

- Physics + statistics based energy forecasts
- Real-time MPC control
- Day-ahead planning optimization
- Real-time load tracking control

Demand/Generation management

- Dynamic pricing & coordinated response
- Microgrid control (day ahead and same day)
- Energy Efficiency & MPC
- Storage control

iBEAM

- HVAC system degradation, O&M
- Building value model

cBEAM

Common resources, budget constraints, O&M

Microgrid Planning and investment
Net Zero communities
AFV fueling infrastructure

Building Cluster/ Industrial Complexes/ Communities

Dynamic Pricing and Coordinated Response

- Community/complex level planning and control with base loads, plug-ins (EVs)
- Dynamic Pricing
 - Time-of-Use rate is settled 24-hour ahead by automated negotiation between Energy Management Controller (EMC) and each individual building
 - EMC: determines price based on aggregated load profile (forecast) and whole sale market (forecast)
 - Individual building: load planning based on price
 - Contract-for-Difference (CFD) price is charged to individual buildings, on the difference between real and committed load profiles
 - Individual building: load tracking to minimize CFD charges
 - Coordinated response to minimize CFD charges
- Minimizing demand variations and risks to the grid (distribution)
- Demand Elasticity of use and and its contribution to coordination

 Microgrid day-ahead planning and same day control under uncertainty;

Functional form for MG savings

$$Cost_{MG,t} = f(I_{GF,t}, I_{PV,t}, I_{WT,t}, I_{WT,t})$$

$$I_{GF} = \frac{GFCap}{E[D]}$$

$$I_{PV} = \frac{Average\ Daily\ PV\ Electricity\ Production}{Average\ Daily\ Demand} = \frac{PVCap}{E[D]} = \frac{C_{PV} \times E[SI]}{E[D]}$$

$$I_{WT} = \frac{Average\ Daily\ WT\ Electricity\ Production}{Average\ Daily\ Demand} = \frac{WTCap}{E[D]} = \frac{C_{WT} \times \eta_{WT} \times E[WS^2]}{E[D]}$$

$$I_{ST} = \frac{STCap}{E[D]}$$

- Micro-grid power generation portfolio optimization under uncertainty;
 - short-term uncertainties rising from micro-grid operation, and
 - long-term uncertainties due to future natural gas prices, investment in renewable assets, and financing costs.

 A solution approach that uniquely combines a general binomial lattice with mixed integer quadratic model for budgeting and a regression model that estimates cost of operation and planning micro-grid with its current resources and load.

$$x'_{t} = x'_{t-1} + (\alpha_{C} - \frac{\sigma_{C}^{2}}{2})\Delta t$$

$$x'_{t} = x'_{t-1} + (\alpha_{C} - \frac{\sigma_{C}^{2}}{2})\Delta t$$

$$dC = \alpha_{N,C} C dt + \sigma_{N,C} C dZ_{N,C}$$

$$Cost_{MG,t} = \beta_{0,t} + \beta_{1,t}I_{GF,t} + \beta_{2,t}I_{PV,t} \times I_{WT,t} + \beta_{3,t}I_{WT,t} \times I_{ST,t}$$

$$Cost_{MG,t} = \beta_{0,t} + \beta_{1,t}I_{GF,t} \times I_{ST,t} + \beta_{2,t}I_{PV,t} \times I_{WT,t} + \beta_{3,t}I_{PV,t} \times I_{ST,t} + \beta_{4,t}I_{WT,t} \times I_{ST,t}$$

Research Areas

Time Short Term (15min-24h)

Scale

Individual Building

Load forecasting and Control

- Physics + statistics based energy forecasts
- Real-time MPC control
- Day-ahead planning optimization
- Real-time load tracking control

Demand/Generation management

- Dynamic pricing & coordinated response
- Microgrid control (day ahead and same day)
- Energy Efficiency & MPC
- Storage control

iBEAM

- HVAC system degradation, O&M
- Building value model

cBEAM

Common resources, budget constraints, O&M

Microgrid Planning and investment
Net Zero communities
AFV fueling infrastructure

Building Cluster/ Industrial Complexes/ Communities

Building Energy Asset Management (BEAM)

Energy-Plus used in operation and long term planning.

Objective #1. Min{Total Building Energy Consumption}

Objective #2. Min{Total Building Cost}

subject to:

Total Building Cost ≤ Total Budget
Mutually Exclusive O &M Policy Options

We will assume that:

Asset energy consumption ~ Asset Avg. effective age

Min {Avg. asset effective age} ≡ Max {Total improvement in asset effective age}

Two Types of Optimization for Building O&M

O&M Optimization I:

Only direct impacts of O&M policies

O&M Optimization II:

Both direct & indirect impacts of O&M policies

i.e. maintenance policy put on asset 1, not only improves asset 1's effective age, but it also impacts asset 2's effective age (positive or negative impact).

Objective #1

Min {Total Building Energy Consumption}

J

Max{Total Assets Energy Performance Improvement}

$$= Max \left\{ \sum_{t,i,k,l} \Delta_{tikl} \times x_{tikl} \right\}$$
 Optimization | & || differ in Δ_{tikl} Calculation

Where

$$x_{tikl} = \begin{cases} 1 & if \ Policy \ (t; k, l) is \ on \ asset \ i \\ 0 & Otherwise \end{cases}$$
 $\forall t = 1, 2 \ (seasons)$
 $\forall i = 1, ..., n \ (assets)$
 $\forall k = 1, ..., 6 \ (maintenance \ policy \ in \ BEAM)$

 $\forall l = 1, ..., m (frequency)$

Objective #2

Total Building Cost = Total Preplanned Action Cost + Asset Penalty Cost_{BaseOption} Reduction in Penalty Cost + Unexpected Reactive Cost_{BaseOption} - Reduction in
Unexpected Reactive Cost

Due to reduction in #
failures

Reduction in Penalty Cost + Reduction in Unexpected Reactive Cost = Total Reduction in Unexpected Cost

Min {Total Building Cost} = Min {Total Preplanned Action Cost – Total Reduction in Unexpected Cost}

Objective #2

Min{Total Building Cost}

$$= Min \left\{ \sum_{t,i,k,l} (C_{PA_{tikl}}) \times x_{tikl} - \left[(C_{PR_{tikl}}) + (C_{RR_{tikl}}) \right] \times x_{tikl} \right\}$$
Total preplanned action cost
Total preplanned unexpected cost

Where

 $C_{PA} = PrePlanned\ Action\ cost \quad \forall i, \forall (t;\ k, l)$ $C_{RR} = E(Unexpected\ Reactive\ Cost\ Reduction) \quad \forall i, \forall (t;\ k, l)$ $C_{PR} = E(Penalty\ Cost\ Reduction) \quad \forall i, \forall (t;\ k, l)$

Constraints

$$\begin{aligned} \mathbf{1} \sum_{k,l} x_{tikl} &\leq 1 & \forall t,i & \text{Mutually Exclusive Options} \\ \mathbf{2} \sum_{t,i,k,l} \left[\left(C_{PA_{tikl}} \right) - \left(C_{RR_{tikl}} \right) \right] \times x_{tikl} &\leq B_{limit} - \sum_{t,i} C_{R_base_{ti}} \end{aligned}$$

Where

$$C_{PA} = PrePlanned\ Action\ cost \quad \forall i, \forall (t;\ k, l)$$

 $C_{RR} = E(Unexpected\ reactive\ cost\ reduction) \quad \forall i, \forall (t;\ k, l)$
 $C_{R_base} = E(Unexpected\ reactive\ cost\ of\ base\ option) \quad \forall t, i$

Optimization I, Coefficient Calculation: $C_{R\ base}$

34

Optimization I, Coefficient Calculation: C_{P_base}

Penalty cost reduction

Penalty per failure of asset i

$$C_{P_{base}} = (A_{base})$$

Penalty cost base option

× Penalty per failure of asset i

Where

 $C_{PR_{tikl}} =$

E(Penalty cost reduction for asset i with option (t; k, l)

Penalty per failure of asset i can be obtained from BEAM's BVM-II score.

BVM-II (Building Value Model) score is the \$ value loss per failure of an asset.

Optimization I, Coefficient Calculation: Δ_{tikl}

$$for \ i = 1, ..., n \ \text{assets}$$

$$\delta^{(t;k,l)} = \begin{bmatrix} \delta_{11} & ... & \delta_{1n} \\ \delta_{21} & ... & \delta_{2n} \\ \delta_{n1} & ... & \delta_{nn} \end{bmatrix}$$
 Improvement dependencies matrix

 $\delta_{ii}^{(t;k,l)}$: Improvement in asset i as a result of (t;k,l)

 $\delta_{ij}^{(t;k,l)}$: Improvement in asset j as a result of (t;k,l) on asset i

$$\delta_{ij}^{(t;k,l)} \cong 0 \quad \forall i \neq j \ (in \ optimization \ I)$$

$$\Delta_{tikl} = \delta_{(i,:)}^{(t;k,l)} \times (EW)^{T} \times (Avg Seasonal Degradation)_{t,i}$$

Obtained offline from EnergyPlus

EW: Energy Weight Matrix

Optimization II-2 asset example option (t;k,l) on asset 1

Optimization II - option (t;k,l) on asset 1

BEAM Optimization

- It is highly unlikely that there exists a feasible solution that optimizes all objectives!
- Instead, we seek a small set of feasible solutions which are non-dominated
- Feasible solution is non-dominated if
 - There is no other feasible solution that is better or equal in all objectives

BEAM Optimization – Case Study

- Scenario #1-Optimization only on chiller: Optimal policy for chiller: Preventive Maintenance Clock-based type 3, Frequency=3 months
- Scenario #2-Optimization on 6 assets:

Recommended Optimal Policy are:

Chiller: Preventive Maintenance Clock-based type 3, Frequency=3 months

Boiler: Preventive Maintenance Age-based type 3, Frequency=3 months

Supply Fan 1 (AHU 1): Preventive Maintenance Clock-based type 3,

Frequency=3 months

Supply Fan 2 (AHU 2): Preventive Maintenance Age-based type 3,

Frequency=3 months

Return fan 1 (AHU 1):Preventive Maintenance Clock-based type 3,

Frequency=3 months

Return fan 2 (AHU 2): Preventive Maintenance Age-based type 3,

Frequency=6 months

Energy Savings

(4 year planning)

	Chiller Electricity Consumption	Boiler Gas Consumption	Building Total Electricity Consumption	% Saving in Building Electricity	% Saving in Boiler Gas Consumption
Baseline	1696597.721 KWh	1923835.056 KWh	3588151.297 KWh	-	-
Optimization on Chiller	1565035.065 KWh	1919373.119 KWh	3427283.006 KWh	4.5%	_
Optimization On 6 Assets	1542024.515 KWh	1889991.510 KWh	3395089.094 KWh	5.4%	1.7%*

Energy Savings

10% degradation increase (4 year planning)

	Chiller Electricity Consumption	Boiler Gas Consumption	Building Total Electricity Consumption	% Saving in Building Electricity	% Saving in Boiler Gas Consumption
Baseline	2560093.637 KWh	1933343.918 KWh	4523347.172 Kwh	-	-
Optimization on Chiller	1659577.289 KWh	1934333.240 KWh	3883931.966 KWh	14.13%	-
Optimization On 6 Asset	1610946.879 KWh	1786283.760 KWh	3522506.937 KWh	22.12%	7.6%